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Abstract. We calculate high-energy photoproduction of the tensor meson f2(1270) by odderon and photon
exchange in the reaction γ+p → f2(1270)+X, where X is either the nucleon or the sum of the N(1520) and
N(1535) baryon resonances. Odderon exchange dominates except at very small transverse momentum, and
we find a cross section of about 20 nb at a centre-of-mass energy of 20 GeV. This result is compared with
what is currently known experimentally about f2 photoproduction. We conclude that odderon exchange is
not ruled out by present data. On the contrary, an odderon-induced cross section of the above magnitude
may help to explain a puzzling result observed by the E687 experiment.

1 Introduction

In this paper we investigate the high-energy diffractive
production of the tensor meson f2(1270) by real and vir-
tual photons. Specifically we study γ(∗)p → f2X, where
X is either the proton or the sum of the negative par-
ity N(1520) and N(1535) resonances. For the latter two
it is expected that the dominant exchange is the nonper-
turbative odderon [1], the C = P = −1 partner of the
pomeron [2]. It has been shown [3] that the suppression of
the odderon contribution in pp (p̄p) scattering can be ex-
plained by diquark clustering in the proton, provided the
diquark is sufficiently small ≤ 0.3 fm. This suppression
does not operate if the nucleon dissociates into a negative
parity state [4]. This paper is a continuation of the work
presented in [4,2] where the electroproduction of pseu-
doscalar mesons, in particular the reaction γ(∗)p → π0X
was studied. An explanation of the general philosophy of
our approach and references to related work can be found
there. A recent review about odderon physics is [5].

At sufficiently high energies only odderon and photon
exchange contribute (Fig. 1) to these reactions. Pomeron
exchange does not contribute due to the positive charge
parity of the f2 (and of the pseudoscalars π0 and η0). Thus
the energies available at HERA are an obvious attraction,
and the cross sections, although small, are not unattain-
able. The two reactions, photoproduction of the tensor me-
son f2(1270) and photoproduction of the pseudoscalars π0

or η0 complement each other from the experimental view-
point as the problems of detection and acceptance are very
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different. Given the rather small cross sections, if a signal
is found in one reaction it is important to check that it is
also there, at the appropriate level, in another.

In Sect. 2 we outline briefly the formalism for tensor
meson production in γ∗ p collisions. The next step is to
construct a suitably normalised wave function for the f2
which is done in Sect. 3. The odderon-exchange contri-
bution is calculated in Sect. 4 and the photon exchange
contribution in Sect. 5. The latter turns out to be about
a factor of ten smaller than the odderon exchange. The
results are discussed in Sect. 6 and compared with what
is currently known experimentally about f2 photoproduc-
tion. We conjecture that the current data can be inter-
preted as providing some evidence for odderon exchange
although alternative and less exciting interpretations can-
not be excluded. Appendices A and B contain respectively
technical details of the calculation of the f2 wave functions
and of their overlap with the photon wave function.

2 Tensor meson production
in the γ(∗)p reaction

We consider the production of the JPC = 2++ tensor
meson f2(1270) in the reaction

γ∗(q1) + p(p) → f2(pf ) + X(pX). (1)

Here we treat this reaction for photon virtualities Q2 ≤
5 GeV2 where q21 = −Q2 and in addition q2 = q1 − pf ,
t2 = q22 and W 2 = s2 = (q1 + p)2.

We start with the odderon exchange contribution of
Fig. 1a, which we calculate in the path integral approach
[6–8]. It was shown in [2] that the final state X is dom-
inated by the two negative parity isospin 1/2 resonances
N(1520) and N(1535) with spin 3/2 and 1/2 respectively.
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Fig. 1a,b. Feynman diagrams for f2 production in the reaction γ(∗)p → f2X at high energies with odderon a and photon b
exchange

In the following we are interested in unpolarised cross
sections and sum over these two final state resonances. In
this case we can neglect the spin degree of freedom of the
quark in the proton and the nucleonic excitations, which
we treat as quark diquark-states with a scalar diquark
[2]. In this way we can describe the odderon-proton in-
teraction as the excitation of a spinless S-wave state (the
proton) into a 2P state (either of the N∗ states). The he-
licity amplitudes in the path integral approach are given
by:

T (s2, t2)λ,λf ,λγ
= 2is2

∫
d2b eiq2T b Ĵλ,λf ,λγ

(b). (2)

Here λ, λf and λγ are respectively the 2P-state, the f2 and
the photon helicities. The profile function Ĵ is defined as

Ĵ(b)λ,λf ,λγ = −
∫
d2r1
4π

dz

∫
d2r2
4π

∑
q,h,h̄

Ψ∗f
λf , qh1h2

(r1, z)

×Ψγ

λγ , qhh̄
(r1, z)Ψ∗ 2P

λ (r2)

×Ψp(r2) J̃(b, r1, z, r2) (3)

where z is the momentum fraction of the photon carried
by the quark, q is a flavour index explained below (12)
and h, h̄ are respectively the quark and antiquark helic-
ities. The physical picture underlying (2), (3) is shown
schematically in Fig. 2. The photon fluctuates into a qq̄
pair, described by Ψγ . By soft colour interaction (odderon
exchange), calculated from the functional integral of two
lightlike Wegner-Wilson loops (J̃), the qq̄ pair turns into
the tensor meson f2 and the proton (Ψp) is excited into a
2P wave (Ψ2P). An explicit expression for J̃ can be found
in [4].

From (2) the cross section for W 2 >> m2
p is given by:

d2σO =
1

8s2
1

(2π)2
d2kT

∑
λ

∑
λf

∑
λγ

|Tλ,λf ,λγ |2. (4)

The wave functions occuring in (2) are light-cone wave
functions [9]. We use the photon wave function for low vir-
tualities as derived in [10] where it is argued that replacing
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Fig. 2. f2 production in the reaction γ(∗)p → f2X. The dashed
circle indicates the nonperturbative interaction (odderon ex-
change) of the colour dipoles

the current quark mass in the expression for Ψγ calculated
in light cone perturbation theory by a Q2-dependent con-
stituent quark mass m(Q2), with m(0) ∼ 0.21 GeV, leads
to a wave function which can also be used for photon vir-
tualities Q2 ≤ 1 GeV2. The nucleon wave functions Ψp

and Ψ2P can be found in [2].
The model as it stands gives no energy dependence of

the cross sections, therefore all our numerical results refer
to W ≈ 20 GeV as the parameters are adapted to that
energy. We expect the energy dependence of the soft odd-
eron contribution to be similar to that of the soft pomeron
as discussed in [2]. It should be recalled that the results for
photoproduction of mesons by odderon exchange are par-
ticularly sensitive to the model parameters and the spe-
cific choice of the photon and meson wave function. As
explained in [2] we estimate the overall uncertainty in our
results to be about a factor of two.

3 The tensor meson wave function

To construct a light cone wave function for the tensor
meson f2, we use a similar procedure as developed in [11]
to construct a wavefunction for the ρ.

We consider the f2 to be a qq̄ state consisting of on-
shell quarks of mass m(Q2), with m(0) ∼ 0.21 GeV, which
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moves with very large momentum in the 3-direction: pf =
(p0

f ,0T , p
3
f ) and p3

f → ∞. To obtain the helicity structure
of the wave function, we consider as interpolating operator
the spin-two quark operator O,

Oµν(x) :=
1
2
ψ̄(x)

{
γ{µi

↔
∂ ν} − 1

2 i
↔
∂/ gµν

}
ψ(x). (5)

For clarity we explain our derivation of the helicity struc-
ture for only one flavour. The final result for the f2 state
will of course be written down with the appropriate flavour
content. The vertex factor corresponding to (5) is

V µν

hh̄
(pq, pq̄) := 〈q(pq, h), q̄(pq̄, h̄)|Oµν(0)|0〉

= 1
2 ū(pq, h)

{
γ{µpν}

q − γ{µp
ν}
q̄

−m(Q2)gµν
}
v(pq̄, h̄). (6)

The quark and the antiquark four-vectors pq and pq̄ are
parametrised by the relative transverse momentum kT

and the momentum fraction z of the f2, carried by the
quark. We have pq = (p0

q,kT , zp
3
f ), pq̄ = (p0

q̄,−kT , z̄p
3
f )

and p2
q = p2

q̄ = m2(Q2) where z̄ = (1 − z).
Next we derive the polarisation tensors eµν(λf ) for a

massive spin-two particle. They can be constructed out of
the polarisation vectors of a massive vector state

eµ
± = (0,∓1,−i, 0)/

√
2,

eµ
0 = (p3

f , 0, 0, p
0
f )/mf , (7)

by use of the appropriate Clebsch-Gordan coefficients [13]
and are given by

eµν(±2) = eµ
±e

ν
±,

eµν(±1) =
√

1
2 (eµ

±e
ν
0 + eµ

0e
ν
±),

eµν(0) =
√

1
6 (eµ

+e
ν
− + eµ

−e
ν
+) +

√
2
3e

µ
0e

ν
0 . (8)

Here we do not use directly the polarisation tensors (8)
but replace the longitudinal polarisation vector e0 in (8)
by ẽ0 := e0 − pf/mf . This is justified neglecting terms of
order m(Q2)/mf ≤ 15%. In any case this affects only the
helicity states 0,±1 of the f2 which will be shown below
to give only a small contribution to the cross section.

Then we define the helicity structure Ψ̃(λf ), for a given
f2 helicity λf and quark and antiquark helicity h and h̄
respectively, as the contraction of the vertex factor (6)
with the corresponding polarisation tensor eµν(λf ),

Ψ̃hh̄(λf ) := lim
p3

f →∞
1
p3

f

√
p3

qp
3
q̄ eµν(λf )V µν

hh̄
. (9)

The f2 helicity wave functions are then given by multi-
plying Ψ̃hh̄(λf ) with a Bauer-Stech-Wirbel (BSW) ansatz
[12] for the transverse and longitudinal momentum distri-
bution of the quarks in the f2,

f̃λf
(kT , z) = Nλf

(zz̄)3/2 e
− 1

2 m2
f (z−1/2)2/ω2

λf

× 2π
ω2

λf
mf

e
− 1

2 k2
T /ω2

λf . (10)
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Fig. 3. a The normalisation constant N2 as a function of ω2.
b The partial decay width for a tensor meson f2 with helicity
2 decaying into two photons (A.5) as a function of ω2

To define the helicity wave functions properly we first
write down the f2 state for helicity λf as follows:

|f2(pf , λf )〉 :=
∫ 1

0
dz

∫ +∞

−∞

d2kT

16π3

1√
zz̄

∑
qhh̄

Ψ̃f

λf ,qhh̄

×
√

1
3δAĀ|q(pq, h, A), q̄(pq̄, h̄, Ā)〉 (11)

with the normalisation of the f2 state chosen as

〈f2(p′
f , λ

′
f |f2(pf , λf 〉 = 2p0

f (2π)3

×δ3(p′
f − pf )δλ′

f λf
. (12)
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The index q in (11) is a flavour index, q = u, d, and
A, Ā are colour indices. The wave functions Ψ̃λf ,qhh̄ are
the momentum space helicity wave functions of a quark-
antiquark dipole with flavour q. They follow directly from
(9),(10) and are given by

Ψ̃f

±2,qhh̄
= (±2)

{
m(Q2) (k1 ± ik2)δh±δh̄±

+(k1 ± ik2)2
(
zδh±δh̄∓ − z̄δh∓δh̄±

) }

×cq f̃2(kT , z),

Ψ̃f

±1,qhh̄
= (−1)

{
mf m(Q2) (z − z̄)δh±δh̄±

∓mf (k1 ± ik2)
(
(3z − 4z2)δh±δh̄∓

+(3z̄ − 4z̄2)δh∓δh̄±
)}
cq f̃1(kT , z),

Ψ̃f

0,qhh̄
= (−

√
2
3 )

{
m(Q2)

(
(k1 − ik2)δh+δh̄+

−(k1 + ik2)δh−δh̄−
)

+ (k2
T + 2zz̄m2

f )

×
(
(z − z̄)δh+δh̄− − (z̄ − z)δh−δh̄+

)}

×cq f̃0(kT , z) (13)

where cq = 1/
√

2 for q = u, d. The constants Nλf
are

determined for each helicity by normalisation as a function
of the frequencies ωλf

.
From (11),(12) it follows that the normalisation con-

ditions of our helicity wave functions (13) are:

∫ 1

0
dz

∫ +∞

−∞

d2kT

16π3

∑
q,h,h̄

|Ψ̃f

λf ,qhh̄
(kT , z)|2 = 1. (14)

In Fig. 3a we show N2 as a function of ω2. To fix the fre-
quencies ωλf

we need additional conditions. We use the
partial decay width of the f2 decaying into two photons,
Γf2→γγ , with the central value [13] being Γf2→γγ = 2.4
keV. From rotational invariance it follows that the f2 de-
cays with the same decay width into two photons, inde-
pendent of its helicity,

Γ (f2(λf ) → γγ) = Γf2→γγ . (15)

In Appendix A we consider the f2-decay for each helicity
in the infinite momentum frame and calculate Γ (f2(λf ) →
γγ), defined in (A.3), as a function of the corresponding
ωλf

. In Fig. 3b we show our result, again for the case
λf = 2. Then ω2 is fixed by requiring (15). Using the
value of ω2 thus obtained we can read off from Fig. 3a
the corresponding normalisation factor N2. For the other
helicities we proceed in a similar way. The results for
the normalisation constants and frequencies are listed in
Table 1 (ωλf

= ω−λf
, Nλf

= N−λf
). Now the momen-

tum space wave functions (13) are fixed and it remains
only to calculate the Fourier-transform in order to get the
configuration-space wave functions needed in (2). This is
done in Appendix B.

Table 1. The numerical values for the normalisation constant
Nλf and for the frequencies ωλf .

λ = 2 λ = 1 λ = 0
Nλf 27.11 38.78 47.33
ωλf 0.53 0.60 0.36

4 The odderon contribution

Now we come back to the helicity amplitudes. To calculate
(2) we first have to consider the overlap functions between
the photon and the f2 wave functions. The explicit results
are listed in (B.4), (B.5), (B.6) of Appendix B. As we can
see there the dependence of all overlap functions on θ1,
the angle between q2T

and r1, is given by a phase,
∑
f,h,h̄

Ψ∗f

λf ,qhh̄
Ψγ

λγ ,qhh̄
= ei(λγ−λf )θ1 (16)

×
[ ∑

f,h,h̄

Ψ∗f

λf ,qhh̄
Ψγ

λγ ,qhh̄

]
θ1=0

.

Inserting (16) in (2) we can integrate over the angle θb,
which is the angle between bT and q2T

. We choose as new
integration variables in (2) the relative angles between bT

and r1(2), θ′
1(2) = θ1(2) −θb, where θ2 is the angle between

q2T
and r2. In this way J̃ in (2) becomes independent of

θb. By performing similar steps leading to (12) in [2] we
get as the result for the helicity amplitudes:

Tλ,λf ,λγ
= 2is2

∫
b db

∫
d2r1
4π

dz

∫
d2r2
4π

×
[ ∑

q,h,h̄

Ψ∗f

λf ,qhh̄
(r1, z)Ψ

γ

λγ ,qhh̄
(r1, z)

]
θ1=0

×Ψ∗ 2P(r2)Ψp(r2)ei((λγ−λf )θ′
1+λθ′

2)

×(i)(λ+λγ−λf )2πJ(λ+λγ−λf )(
√−t2b)

×J̃(bT , r1, z, r2). (17)

We note that for λ = λf −λγ the forward amplitude does
not vanish.

We first consider f2 production by real photons. Using
an argument similar to that in [2] we see that the ampli-
tudes for λ = 0 vanish, so we have 20 helicity amplitudes
contributing to the sum in (4). However, from (B.4) and
(B.6) and noting that J−n(x) = (−1)nJn(x) it follows that

|Tλ,λf ,λγ
|2 = |T−λ,−λf ,−λγ

|2 (18)

and we are left with only 10 independent amplitudes. Of
course (18) is a consequence of parity invariance. The re-
sult for the differential cross section is:

dσO

t

dt2
=

1
16π

1
s22

∑
λf

∑
λγ

|T1,λf ,λγ
|2 . (19)

We show our result for the differential cross section in
Fig. 4. A first observation is that it looks quite similar to
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Fig. 4. The differential cross section for γp → f2X. A fit
to this curve is: dσO

t /dt2 = a exp(−b|t2| + c|t2|2) where a =
97 nb/GeV2, b = 4.8 GeV−2, c = 0.52 GeV−4

the differential cross section of π0 production [2], but the
normalisation is more than a factor of ten smaller. This
can be understood by considering the flavour part of the
π0 and the f2 wave functions. The π0 has isospin one, so
π0 ∼ (uū−dd̄)/√2. This leads to a factor e/

√
2 in the π0γ-

overlap as the flavour part of the photon wave function is
γ ∼ (2uū−dd̄)/3. On the other hand in the case of the f2
we have f2 ∼ (uū + dd̄)/

√
2 and so we get e/

√
18 for the

γf2 overlap. This can simply be restated that in the case
of the π0 the photon must be isovector while in the case of
the f2 the photon must be isoscalar. These factors enter
quadratically into the cross section, so naively we expect
the f2 photoproduction cross section to be a factor of 9
smaller than that for the π0.

Second, by computing the various helicity amplitudes
we find that almost all of the cross section comes from the
amplitudes T1,2,1 and T−1,−2,−1, where a helicity ±1 pho-
ton is diffractively transformed into a helicity ±2 tensor
meson f2. This means that the conservation of s-channel
helicity is almost maximally violated at the particle level
although it is fulfilled at the quark level. By integrating
the differential distribution of Fig. 4 we get for the total
cross section:

σO(γ p → f2 2P) = 21 nb. (20)

Next we calculate the differential cross section for Q2 6= 0.
In addition to (19) we define the longitudinal differential
cross section as

dσO

l

dt2
=

1
16π

1
s22

∑
λ

∑
λf

|Tλ,λf ,0|2. (21)
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Fig. 5. a The differential cross section for γ∗p → f2X for
Q2 = 1 GeV2 for transversely polarised photons (solid line)
and longitudinally polarised photons (dashed line) and for
Q2 = 4 GeV2 for transversely polarised photons (dashed dot-
ted line) and for longitudinally polarised photons (dotted line).
b The integrated cross section for transversely (solid line) and
longitudinally (dashed line) polarised photons

In Fig. 5a we compare the differential cross section for
transversely and longitudinally polarised photons collid-
ing with the proton for virtualities Q2 = 1, 4 GeV2. In
addition we show in Fig. 5b the integrated transverse
and longitudinal cross section for Q2 ≤ 5 GeV2, which
is calculated by integrating (19), (21). With increasing
photon virtuality the transverse cross section drops quite
rapidly. From Q2 = 0 to Q2 = 1 GeV2 the cross section
decreases by more than a factor of five. At Q2 = 4 GeV2
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the longitudinal cross section becomes comparable to the
transverse one. However the decrease with increasing Q2 is
not so rapid as in the case of π0 production by odderon ex-
change [4]. Due to the dependence of the constituent mass
m(Q2) on Q2 for Q2 ≤ 1 GeV2, the cross section depends
strongly on the weight of the terms in the overlap integrals
which are proportional to m(Q2). For f2 production this
contribution is rather small (about 20% at Q2 = 0). For
π0 production the terms in m(Q2) are significant, result-
ing in a steeper fall-off with increasing Q2 as can be seen
from Fig. 8 of [4].

Finally we go from γ∗p to ep, restricting ourselves to
small photon virtualities, Q2 < 0.01 GeV2 and applying
the equivalent photon approximation (EPA) [14]. As the
experimentally prefered observable we calculate the trans-
verse momentum (kT ) distribution of the tensor meson f2
with respect to the ep collision axis. Although kT is for-
mally defined as the transverse momentum of the f2 with
respect to the incoming photon we are allowed to identify
it with the transverse momentum relative to the ep colli-
sion axis due to the restriction Q2 < 0.01 GeV2, at least
for kT > 0.1 GeV.

dσO
ep

d|kT | = cEPA
1
8π

1
W 2 |kT |

∑
λf

∑
λγ

|T1,λf ,λγ
|2. (22)

Since the cross section (4) does not depend on the energy
we just have to multiply it with a constant cEPA given by
the integral over the equivalent photon spectrum of the
incoming electron. This constant depends on the phase
space cuts applied. For the HERA “photoproduction” cuts
(which in addition to Q2 < 0.01 GeV2 require 0.3 ≤ y ≤
0.7 where y is the energy fraction of the incoming electron
carried by the photon in the proton rest frame) cEPA =
0.0136 [2]. The result for the kT distribution is shown as
the solid line in Fig. 6. This gives a total cross section for
ep → ef22P by odderon exchange of ∼ 285 pb.

5 The photon contribution

In this section we calculate the electromagnetic contri-
bution Fig. 1b. In contrast to diffractive f2 production, in
the electromagnetic case we get a contribution from “elas-
tic” production, where the proton stays intact, as well as
from “inelastic” production. In the following we calculate
the two cases where either the proton stays intact or the
proton gets exited into the resonances N(1520), N(1535).

We start with the “inelastic” case and calculate it in
a similar way to the diffractive contribution. To do so we
just have to do the replacement J̃ → J̃γ

q in (2),(3) where to
lowest order in the electromagnetic coupling constant J̃γ

q

describes one photon exchange between the qq̄ pair from
the photon and the quark-diquark pair of the proton,

J̃γ
q = −ie2Qq

{
2
3
K0(µ|b + zr1 − r2/2|

2π

−2
3
K0(µ|b − z̄r1 − r2/2|

2π
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Fig. 6. Transverse momentum distribution of the f2 produced
in ep collisions for odderon exchange (solid line), for photon
exchange when the proton stays intact (dashed line) and for
photon exchange, when the proton gets excited into the reso-
nances N(1520), N(1535) (dashed dotted line)

+
1
3
K0(µ|b + zr1 + r2/2|

2π

−1
3
K0(µ|b − z̄r1 + r2/2|)

2π

}
. (23)

Here we have introduced a photon mass µ which will dis-
appear in our final results. In addition Qq is the quark
charge, Qu = 2/3, Qd = −1/3.

We use (2),(3), replacing J̃ by J̃γ
q . In this way each

helicity amplitude consists of four terms proportional to
the photon propagators in configuration space. Making a
shift in b in an appropriate way we can perform the b
integrations in each of these contributions. In this way
the photon propagator in momentum space enters. Then,
finally we can also perform the θ1, θ2 integrations to get
as result for the “inelastic” electromagnetic part of the
helicity amplitudes:

T γ
λ,λf ,λγ

= 2is2
∫
dr1r1
4π

dz

∫
dr2r2
4π

×
[ ∑

q,h,h̄

Ψ∗f

λf ,qhh̄
(r1, z)Ψ

γ

λγ ,qhh̄
(r1, z)

]
θ1=0

Ψ∗ 2P(r2)

×Ψp(r2)(
5ie2

9
)

1
|t2| (2π)2 iλ+λγ−λf

×
(
Jλγ−λf

(
√

|t2|zr1) − (−1)λγ−λfJλγ−λf
(
√

|t2|z̄r1)
)

×
(
2Jλ(

√
|t2|r2/2) + (−1)λJλ(

√
|t2|r2/2)

)
. (24)
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The result for the “elastic” helicity amplitudes T γ
λf ,λγ

can
be read off from (24) for λ = 0, replacing Ψ2P by Ψp.

We concentrate directly on the ep reaction and apply
the EPA, restricting ourselves again to HERA photopro-
duction cuts, and calculate the kT spectrum (22) for the
“elastic” and the “inelastic” case. The result is shown in
Fig. 6. As in π0 production photon exchange is dominated
by odderon exchange for kT ≥ 0.1 GeV, but not by as
much as in the former case. This can again be understood
from consideration of the flavour parts. We couple two
photons to the upper quark loop, which leads to a factor
(Qqe)2. Now when summing over the flavours q = u, d,
taking into account the flavour parts of the wave func-
tions, we find in case of the π0 a factor 1/9 and in case
of the f2 a factor 5/9. However, already for kT ≥ 0.2 the
odderon contribution is more than a factor of ten larger
than the electromagnetic contribution.

The integrated cross section gets most of its contribu-
tions from very small values of |t2|, so the result is sensitive
to the lower limit of |t2|. Here we are specially interested
in the value for the E687 experiment, where

√
s2 is be-

tween 7 and 17 GeV. For the averaged value
√
s2 = 12

GeV we get a lower limit of about 0.0001 GeV2. Using it
we find for the γp reaction as integrated cross section for
the electromagnetic contribution:

σγ
γp(γ p → f2 p) ≈ 2.2 nb (25)

which is about ten times smaller than the odderon cross
section (20).

As can be seen from Fig. 6 the breakup by photon
exchange is about a factor of 1000 smaller than the one
induced by odderon exchange; interference terms between
the odderon and the photon exchange are therefore to be
expected at most on the 10 percent level.

6 Discussion

In this paper we have calculated the diffractive photo-
and electroproduction of the f2 at high energies. Our ap-
proach is based on functional integral techniques and the
model of the stochastic vacuum to treat QCD in the non-
perturbative region. We find a cross section of ∼ 20 nb
for the odderon-exchange reaction γp → f2X where the
proton is required to break up. We estimate the overall
uncertainty of our results to be about a factor of 2. In our
model the elastic reaction γp → f2p gets no contribution
from odderon exchange in the strict quark-diquark limit
for the proton structure. We also calculated the contribu-
tions from photon exchange instead of the odderon and
found them to be small. We turn now to a discussion of
the relevant experimental information.

In their high-statistics study of diffractively produced
π+π− states at high energy, 〈√s〉 ∼ 12 GeV, the E687 Col-
laboration [15] has shown unambiguous evidence for the
presence of the f2(1270). Its strength is between ∼ 0.1%
and ∼ 0.16% of the ρ signal, depending on whether one
or two ρ′ states are included in the analysis. As an expla-
nation of its observation the E687 collaboration suggested

that as some particles, for example neutrals, could possi-
bly be missed at such low relative yields the f2(1270) sig-
nal should be considerd as part of the background. How-
ever there are at least two other explanations. One is the
mundane one of Regge exchange, specifically ρ and ω, as
the energy of the experiment is not sufficiently high to
exclude this possibility. The second is, of course, odderon
exchange.

Cross sections are not quoted explicitly by E687 but
production rates relative to the ρ are given. The experi-
ment, which was designed primarily for charm photopro-
duction, used a 4cm long beryllium target and selected
the π+π− candidates from two-prong events with a veto
on additional charged tracks and π0’s. Thus there is no in-
formation on the target particle and at some level events
with N∗ production must be present. We know that the
diffractive ρ cross section at high energies is about 10 µb
and the quasi-diffractive cross section with nucleon break-
up is about 5 µb. These, together with the relative f2
production rate, imply a cross section for the f2(1270) be-
tween ∼ 10 nb and ∼ 30 nb. That is, it is of the same
order of magnitude as our calculated f2 cross section from
odderon exchange.

Let us look first at the alternative explanation, namely
Regge exchange. In a diffractive π+π− photoproduction
experiment at

√
s ∼ 6 GeV the SLAC Hybrid Photon Col-

laboration [16] saw no evidence for the f2(1270) in their
π+π− mass spectrum. The data in this experiment corre-
spond to genuine elastic diffraction with no quasi-elastic
events present in the final sample which was selected on
the basis of a three-constraint kinematic fit. If the E687 f2
signal were due to Regge exchange then, as we expect this
cross section to vary approximately as s−1, the f2 signal
at

√
s ∼ 6 GeV would be ∼ 40 to ∼ 120 nb. This is com-

parable to the ρ′ cross section of ∼ 130 nb and would have
been visible in the experiment even at the lower limit. Of
course, as explained earlier, we would not expect any odd-
eron contribution to be seen in this experiment as nucleon
break-up is specifically excluded.

In a similar experiment the CERN Omega Photon Col-
laboration [17] at 〈√s〉 ∼ 8.5 GeV has also seen no evi-
dence for the f2 in their π+π−mass spectrum. The CERN
experiment has lower statistics than the SLAC experi-
ment, and the estimated Regge cross section is lower, lying
between ∼ 20 and ∼ 60 nb. The upper end of this range
can reasonably be ruled out but not the lower. The CERN
experiment also differs from the SLAC experiment in that
it cannot exclude some contamination from quasi-elastic
events with nucleon break-up, so odderon exchange is al-
lowed. Without a re-analysis of the data it is difficult to
say categorically whether a cross section of 10 to 20 nb
for the f2 would be observable, although it does seem im-
probable.

Thus we can rather safely rule out Regge exchange as
an explanation of the f2 signal in the E687 experiment,
but can retain the possibility of odderon exchange as an
alternative to the “missing-particles” hypothesis. It may
be purely coincidental that the experimental cross section
for the f2 is of the same order of magnitude as our calcula-
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tion, but it is encouraging none the less. An additional and
very relevant fact is that the t-dependence of the odderon
term is significantly less strong than in diffractive ρ pho-
toproduction, for example. This means that the f2 cross
section will appear to be relatively suppressed at small t,
in conformity with the E687 data. Of course none of this
is sufficient to claim that the odderon has been observed
but it is sufficient to justify a new experimental study to
confirm or deny this hypothesis.

The t-dependence of the cross sections for f2 and π0

are very similar, but the Q2 dependence of the former is
much less strong than for the latter. Thus although the f2
cross section is a factor of about ten smaller than the π0

cross section for production by real photons the difference
is much less marked if a range of photon virtualities is
considered and f2 production is competitive.

The experiments H1 and ZEUS at HERA are ideally
suited to clarify the situation since they have higher c.m.
energy and can trigger on nucleon break-up. The challenge
is then to observe a cross section of the order of 0.3 nb.
for e p → ef2X.
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A The decay of the f2 into two photons

In this appendix we calculate the partial width of the de-
cay f2 → γγ for the f2 being in a definite helicity state,
Γ (f2(λf ) → γγ). We perform the calculation in the infinite
momentum frame, where the three momentum of the f2 is very
large, p3

f → ∞, and pfT
= 0.

The starting point of the following quark model calculation
is the S-matrix element:

Sfi = δfi + i(2π)4δ4(
∑

f

pf −
∑

i

pi)Tfi, (A.1)

Tfi = 〈γ(k1, λ1), γ(k2, λ2)|T |f2(pf , λf )〉

:= T (k1, k2; λ1, λ2; λf ) =
∫

d2kT

(16π)3
1√
zz̄

∑
q,h,h̄

Ψ̃f

λf ,qhh̄

×
√

1
3δAĀ〈γ(k1, λ1), γ(k2, λ2)|T |q(pq, h, A), q̄(pq̄, h̄, Ā)〉.

We calculate the partonic S-matrix element in (A.1) in lowest
order perturbation theory. The Feynman diagrams are shown
in Fig. 7. The corresponding analytic expression is:

〈γ(k1, λ1), γ(k2, λ2)|T |q(pq, h, A), q̄(pq̄, h̄, Ā)〉 =

pq

p
�q

q

�q

k1

k2

; �1

; �2

pq

p
�q

q

�q

k1

k2

; �1

; �2

Fig. 7. The Feynman diagrams for the partonic S-matrix ele-
ment in (A.1)

× δAĀ Q2
qe

2 v̄(pq̄, h̄)
{
e/ (λ2)

(p/q − k/1 + m)
(pq − k1)2 − m2 + iε

e/ (λ1)

+ e/ (λ1)
(p/q − k/2 + m)

(pq − k2)2 − m2 + iε
e/ (λ2)

}
u(pq, h) (A.2)

Here Qq is the quark charge. Combining (A.1) and (A.2) the
decay rate of the f2 with helicity λf is given by

Γ (f2(λf ) → γγ) =
∫

1
2mf

(2π)4δ4(pf − k1 − k2) (A.3)

× 1
2

d3k1

(2π)32k0
1

d3k2

(2π)32k0
2
|T (k1, k2; λ1, λ2, λf )|2

where we have made the approximation pq + pq̄ ≈ pf . The fac-
tor 1/2 reflects that the final state photons are indistingiush-
able.

Now, since we consider the decay in the infinite momentum
frame of the f2 it is useful to introduce light cone variables for
the photon momenta k1, k2 when performing the phase space
integral in (A.3),

d3k1

(2π)32k0
1

d3k2

(2π)32k0
2
δ4(pf − k1 − k2) =

1
2

2∏
i=1

[
dki+dki−d2kiT

1
ki+

δ(ki− − k2
iT

ki+

)
]

δ(pf+ − k1+ − k2+)δ(pf− − k1− − k2−)

δ2(k1T + k2T ) . (A.4)

From (A.4) one can see, that we are left with an integral over
the transverse momentum of one photon, say k1T := qT . Using
(A.4) we finally get for the partial decay width:

Γ (f2(λf ) → γγ) =
1

8mf

1
(2π)2

∑
j=+,−

∫
d2qT (A.5)

× 1
m2

f

1√
1 − 4q2

T /m2
f

∑
λ1,λ2

|Tj(qT , λ1, λ2)|2
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where we have to replace the plus, minus and transverse com-
ponents of the photon momenta in (A.3) according to (A.4)
by:

k1T = −k2T = qT , ki− =
q2

T

ki+

,

k1+ = 1
2pf+

(
1 ±

√
1 − 4q2

T

m2
f

) := q±,

k2+ = 1
2pf+

(
1 ∓

√
1 − 4q2

T

m2
f

) := q∓ . (A.6)

Now we discuss (A.5) in more detail: First there occurs a sum
over amplitudes T±. For definite helicities of the photons they
are defined as

T+ := T (k1+ → q+, k2+ → q−),
T− := T (k1+ → q−, k2+ → q+), (A.7)

where T are the amplitudes defined in (A.1). When translating
them into the rest frame they correspond to the cases that ei-
ther photon 1 (+) or photon 2 (−) has positive momentum in
three direction. This becomes clear by looking at the expres-
sions for ki+ in (A.6). The (+) case corresponds to the upper
signs and the (−) case to the lower ones.

Second, again by considering the decay in the rest frame
it is clear, that no soft photon singularities can arise since the
absolute value of the photon momenta is mf/2. In principle a
very soft photon can be produced by the boost into the infi-
nite momentum frame when the photons have only momentum
in three direction. However, this special kinematical situation
corresponds to |qT | := qT = 0 in (A.5) and is supressed due
to a factor qT from the integration measure. Finally the sum
over all photon polarisations does only depend on qT and so
the angle integration can be done trivially.

To calculate (A.5) we generate for every photon polarisa-
tion pair (λ1, λ2) explicit expressions for the matrix elements
(A.1) using mathematica and calculate the integrals by nu-
merical integration. After performing the sum over the photon
polarisations in (A.5) we are left with a one dimensional inte-
gral over qT , whose value depends on the frequency ωλf . This
integral Γ (f2(λf ) → γγ) of (A.5) is plotted in Fig. 3 for the
case λf = 2 as a function of ω2.

B The calculation
of the γ∗f2 overlap functions

In this appendix we calculate the Fourier transforms of the he-
licity wave functions (13) and the photon-tensor meson overlap
functions. We start by defining the configuration space helicity
wave functions:

Ψf

λf ,qhh̄
(r1, z) :=

∫
d2kT

(2π)2
eikT r1 Ψ̃f

λf ,qhh̄
(kT , z) . (B.1)

The kT -dependence of the helicity structure of Ψ̃ can be ex-
pressed by spatial derivatives acting on the exponential in
(B.1) and so, besides differentiating, it remains to calculate
the Fourier transforms fλf of the BSW functions (10) with the
result

fλf (r1, z) = Nλf (zz̄)3/2 e
− 1

2 m2
f (z−1/2)2/ω2

λf

× 1
mf

e
− 1

2 r2
1 ω2

λf . (B.2)

In this way we find for the helicity wave functions of a qq̄-dipole
(13) in configuration space (cu = cd = 1/

√
2):

Ψf

±2,qhh̄
= (±2)

{
im(Q2)e±iθ1ω2

2r1δ±±

∓e±2iθ1ω4
2r2

1(zδ±∓ − z̄δ∓±)
}

cqf2,

Ψf

±1,qhh̄
= (−1)

{
mfm(Q2)(z − z̄)δ±±

∓imfe±iθ1ω2
1r1

(
(3z − 4z2)δ±∓

+(3z̄ − 4z̄2)δ∓±
)}

cqf1,

Ψf

0 ,qhh̄
= (−

√
2
3 )

{
im(Q2)ω2

0r1(e−iθ1δ++ − eiθ1δ−−)

+
(
2zz̄m2

f − ω4
0r2

1 + 2ω2
0

)(
(z − z̄)δ+−

−(z̄ − z)δ−+

)}
cqf0 . (B.3)

Next we use (B.3) together with the photon wave functions as
given in (4)-(6) of [18] and calculate the γ∗f2 overlap functions.
With 〈e〉 = e/

√
18 we find for transversly polarised photons:

∑
q,h,h̄

Ψ∗f

+2,qhh̄
Ψγ

1,qhh̄
= ie−iθ1(−2)

√
6〈e〉

{
m(Q2)2ω2

2r1

×K0(εr1)
2π

+ ω4
2r2

1(z
2 + z̄2)ε

K1(εr1)
2π

}
f2(r1, z)∑

q,h,h̄

Ψ∗f

−2,qhh̄
Ψγ

1,qhh̄
= ie3iθ1(2)

√
6〈e〉

×
{

ω4
2r2

1(2zz̄)ε
K1(εr1)

2π

}
f2(r1, z)

∑
q,h,h̄

Ψ∗f

+1,qhh̄
Ψγ

1,qhh̄
= (−1)

√
6〈e〉

{
mfm(Q2)2(z − z̄)

×K0(εr1)
2π

+ mfω2
1r1(z − z̄)(1 − 4zz̄)ε

K1(εr1)
2π

}
×f1(r1, z)∑

q,h,h̄

Ψ∗f

−1,qhh̄
Ψγ

1,qhh̄
= e2iθ1

√
6〈e〉

×
{

mfω2
1r1(z̄ − z)(4zz̄)ε

K1(εr1)
2π

}
f1(r1, z)

∑
q,h,h̄

Ψ∗f

0 ,qhh̄
Ψγ

1,qhh̄
= ieiθ12〈e〉

{
m(Q2)2ω2

0r1
K0(εr1)

2π

−(2zz̄m2
f −ω4

0r2
1 + 2ω2

0)(z − z̄)2ε
K1(εr1)

2π

}
f0(r1, z)

(B.4)

The γ∗f2 overlap functions for longitudinally polarised photons
are: ∑

q,h,h̄

Ψ∗f

+2,qhh̄
Ψγ

0,qhh̄
= Qe−2iθ12

√
3〈e〉

×
{

ω4
2r2

1(z − z̄)(2zz̄)
K0(εr1)

2π

}
f2(r1, z),

∑
q,h,h̄

Ψ∗f

+1,qhh̄
Ψγ

0,qhh̄
= Qie−iθ1

√
3〈e〉

{
mfω2

1r1(2zz̄)
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×
(
(3z − 4z2) + (3z̄ − 4z̄2)

)K0(εr1)
2π

}
f1(r1, z),

∑
q,h,h̄

Ψ∗f

0,qhh̄
Ψγ

0,qhh̄
= Q

√
2〈e〉

{
(2zz̄m2

f − ω2
0r2

1 + 2ω2
0)

×(2zz̄)2(z − z̄)
K0(εr1)

2π

}
f0(r1, z) . (B.5)

Finally the remaining overlap functions are simply related to
the overlap functions (B.4), (B.5) by:

∑
q,h,h̄

Ψ∗f

+λf ,qhh̄
Ψγ

+λγ ,qhh̄
=

( ∑
q,h,h̄

Ψ∗f

−λf ,qhh̄
Ψγ

−λγ ,qhh̄

)∗
.

(B.6)
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